A Hierarchical Bayes Approach to Variable Selection for Generalized Linear Models

نویسنده

  • Xinlei Wang
چکیده

For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to other criteria such as AIC and BIC on normal, logistic and Poisson regression model classes. A Fully Bayes criterion based on a restricted region hyperprior seems to be the most promising.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Bayesian Criteria in Variable Selection for Generalized Linear Models

For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to othe...

متن کامل

Bayesian projection approaches to variable selection in generalized linear models

A Bayesian approach to variable selection which is based on the expected Kullback–Leibler divergence between the full model and its projection onto a submodel has recently been suggested in the literature. For generalized linear models an extension of this idea is proposed by considering projections onto subspaces defined via some form of L1 constraint on the parameter in the full model. This l...

متن کامل

Non-linear Bayesian prediction of generalized order statistics for liftime models

In this paper, we obtain  Bayesian prediction intervals as well as Bayes predictive estimators under square error loss for generalized order statistics when the distribution of the underlying population belongs to a family which includes several important distributions.

متن کامل

Small Area Estimation of the Mean of Household\'s Income in Selected Provinces of Iran with Hierarchical Bayes Approach

Extended Abstract. Small area estimation has received a lot of attention in recent years due to necessity demand for reliable small area statistics. Direct estimator may not provide adequate precision, because sample size in small areas is seldom large enough. Hence, by employing models that can use auxiliary information and area effects in descriptions, one can increase the precision of direct...

متن کامل

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models

Inspired by analysis of genomic data, the primary quest is to identify associations between studied traits and genetic markers where number of markers is typically much larger than sample size. Bayesian variable selection methods with Markov chain Monte Carlo (MCMC) are extensively applied to analyze such high-dimensional data. However, MCMC is often slow to converge with large number of candid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004